Skip to main content

Advertisement

Log in

IFNγ expression by an attenuated strain of Salmonella enterica serovar Typhimurium improves vaccine efficacy in susceptible TLR4-defective C3H/HeJ mice

  • Original Investigation
  • Published:
Medical Microbiology and Immunology Aims and scope Submit manuscript

Abstract

C3H/HeJ mice carry a mutated allele of TLR4 gene (TLR4 d) and thus are hyporesponsive to the lethal effects of lipopolysaccharide (LPS). Characteristically, however, the mice are also hypersusceptible to infections, particularly by Gram-negative bacteria such as Salmonella enterica serovar Typhimurium (S. typhimurium) and are known to be difficult to vaccinate against virulent exposure. This is observed despite the expression of wild-type allele of Nramp1 gene, another important determinant of Salmonella susceptibility. In contrast, C3H/HeN mice (TLR4 n Nramp1 n) express a functional TLR4 protein and are resistant to infection, even by virulent strains of S. typhimurium. In the present study, we describe the immune system-enhancing properties of an attenuated strain of S. typhimurium engineered to express murine IFN-γ. This strain (designated GIDIFN) was able to modulate immune responses following systemic inoculation by upregulating the production of inflammatory mediators (IL-6 and IL-12) and anti-bacterial effector molecules (nitric oxide; NO). Consequently, this led to a more effective control of bacterial proliferation in systemic target organs in both C3H/HeJ and C3H/HeN mice. Although evidence for the enhancement in immune responses could be observed as early as few hours post-inoculation, sustained improvements required 2–3 days to manifest. Vaccination of C3H/HeJ mice with GIDIFN strain, even at low doses, conferred a significantly higher degree of protection against challenge with virulent Salmonella in susceptible C3H/HeJ mice. Our data demonstrate that IFNγ-expressing Salmonella are immunogenic and confer excellent protection against virulent challenge in susceptible C3H/HeJ mice; in addition they may be used as an effective mucosal delivery vectors against virulent infection and for boosting immune responses in immunodeficient hosts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Pasetti MF, Levine MM, Sztein MB (2003) Animal models paving the way for clinical trials of attenuated Salmonella enterica serovar Typhi live oral vaccines and live vectors. Vaccine 21:401–418

    Article  PubMed  CAS  Google Scholar 

  2. Wahid R, Pasetti MF, Maciel M Jr, Simon JK, Tacket CO, Levine MM, Sztein MB (2011) Oral priming with Salmonella typhi vaccine strain CVD 909 followed by parenteral boost with the S. typhi Vi capsular polysaccharide vaccine induces CD27 + IgD-S. typhi-specific IgA and IgG B memory cells in humans. Clin Immunol 138:187–200

    Article  PubMed  CAS  Google Scholar 

  3. Russmann H, Shams H, Poblete F, Fu Y, Galan JE, Donis RO (1998) Delivery of epitopes by the Salmonella type III secretion system for vaccine development. Science 281:565–568

    Article  PubMed  CAS  Google Scholar 

  4. Khan S, Chatfield S, Stratford R, Bedwell J, Bentley M, Sulsh S, Giemza R, Smith S, Bongard E, Cosgrove CA et al (2007) Ability of SPI2 mutant of S. typhi to effectively induce antibody responses to the mucosal antigen enterotoxigenic E. coli heat labile toxin B subunit after oral delivery to humans. Vaccine 25:4175–4182

    Article  PubMed  CAS  Google Scholar 

  5. Galen JE, Wang JY, Chinchilla M, Vindurampulle C, Vogel JE, Levy H, Blackwelder WC, Pasetti MF, Levine MM (2010) A new generation of stable, nonantibiotic, low-copy-number plasmids improves immune responses to foreign antigens in Salmonella enterica serovar Typhi live vectors. Infect Immun 78:337–347

    Article  PubMed  CAS  Google Scholar 

  6. Loessner H, Endmann A, Leschner S, Westphal K, Rohde M, Miloud T, Hammerling G, Neuhaus K, Weiss S (2007) Remote control of tumour-targeted Salmonella enterica serovar Typhimurium by the use of L-arabinose as inducer of bacterial gene expression in vivo. Cell Microbiol 9:1529–1537

    Article  PubMed  CAS  Google Scholar 

  7. Heithoff DM, Conner CP, Hanna PC, Julio SM, Hentschel U, Mahan MJ (1997) Bacterial infection as assessed by in vivo gene expression. Proc Nat Acad Sci USA 94:934–939

    Article  PubMed  CAS  Google Scholar 

  8. McSorley SJ, Xu D, Liew FY (1997) Vaccine efficacy of Salmonella strains expressing glycoprotein 63 with different promoters. Infect Immun 65:171–178

    PubMed  CAS  Google Scholar 

  9. Xu D, McSorley SJ, Tetley L, Chatfield S, Dougan G, Chan WL, Satoskar A, David JR, Liew FY (1998) Protective effect on Leishmania major infection of migration inhibitory factor, TNF-alpha, and IFN-gamma administered orally via attenuated Salmonella typhimurium. J Immunol 160:1285–1289

    PubMed  CAS  Google Scholar 

  10. Hohmann EL, Oletta CA, Loomis WP, Miller SI (1995) Macrophage-inducible expression of a model antigen in Salmonella typhimurium enhances immunogenicity. Proc Nat Acad Sci USA 92:2904–2908

    Article  PubMed  CAS  Google Scholar 

  11. Dunstan SJ, Simmons CP, Strugnell RA (1999) Use of in vivo-regulated promoters to deliver antigens from attenuated Salmonella enterica var. typhimurium. Infect Immun 67:5133–5141

    PubMed  CAS  Google Scholar 

  12. Bumann D (2001) Regulated antigen expression in live recombinant Salmonella enterica serovar Typhimurium strongly affects colonization capabilities and specific CD4(+)-T-cell responses. Infect Immun 69:7493–7500

    Article  PubMed  CAS  Google Scholar 

  13. Carrier MJ, Chatfield SN, Dougan G, Nowicka UT, O’Callaghan D, Beesley JE, Milano S, Cillari E, Liew FY (1992) Expression of human IL-1 beta in Salmonella typhimurium. A model system for the delivery of recombinant therapeutic proteins in vivo. J Immunol 148:1176–1181

    PubMed  CAS  Google Scholar 

  14. al-Ramadi BK, Al-Dhaheri MH, Mustafa N, Abouhaidar M, Xu D, Liew FY, Lukic ML, Fernandez-Cabezudo MJ (2001) Influence of vector-encoded cytokines on anti-Salmonella immunity: divergent effects of interleukin-2 and tumor necrosis factor alpha. Infect Immun 69:3980–3988

    Article  PubMed  CAS  Google Scholar 

  15. al-Ramadi BK, Mustafa N, AbouHaidar M, Fernandez-Cabezudo MJ (2003) Induction of innate immunity by IL-2-expressing Salmonella confers protection against lethal infection. Mol Immunol 39:763–770

    Article  PubMed  CAS  Google Scholar 

  16. al-Ramadi BK, Bashir G, Rizvi TA, Fernandez-Cabezudo MJ (2004) Poor survival but high immunogenicity of IL-2-expressing Salmonella typhimurium in inherently resistant mice. Microbes Infect 6:350–359

    Article  PubMed  CAS  Google Scholar 

  17. al-Ramadi BK, Fernandez-Cabezudo MJ, El-Hasasna H, Al-Salam S, Bashir G, Chouaib S (2009) Potent anti-tumor activity of systemically-administered IL2-expressing Salmonella correlates with decreased angiogenesis and enhanced tumor apoptosis. Clin Immunol 130:89–97

    Article  PubMed  CAS  Google Scholar 

  18. Fields PI, Swanson RV, Haidaris CG, Heffron F (1986) Mutants of Salmonella typhimurium that cannot survive within the macrophage are avirulent. Proc Nat Acad Sci USA 83:5189–5193

    Article  PubMed  CAS  Google Scholar 

  19. Gruenheid S, Gros P (2000) Genetic susceptibility to intracellular infections: Nramp1, macrophage function and divalent cations transport. Curr Opin Microbiol 3:43–48

    Article  PubMed  CAS  Google Scholar 

  20. Soo SS, Villarreal-Ramos B, Anjam Khan CM, Hormaeche CE, Blackwell JM (1998) Genetic control of immune response to recombinant antigens carried by an attenuated Salmonella typhimurium vaccine strain: Nramp1 influences T-helper subset responses and protection against leishmanial challenge. Infect Immun 66:1910–1917

    PubMed  CAS  Google Scholar 

  21. Lang T, Prina E, Sibthorpe D, Blackwell JM (1997) Nramp1 transfection transfers Ity/Lsh/Bcg-related pleiotropic effects on macrophage activation: influence on antigen processing and presentation. Infect Immun 65:380–386

    PubMed  CAS  Google Scholar 

  22. Poltorak A, He X, Smirnova I, Liu MY, Van Huffel C, Du X, Birdwell D, Alejos E, Silva M, Galanos C et al (1998) Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 282:2085–2088

    Article  PubMed  CAS  Google Scholar 

  23. Qureshi ST, Lariviere L, Leveque G, Clermont S, Moore KJ, Gros P, Malo D (1999) Endotoxin-tolerant mice have mutations in Toll-like receptor 4 (Tlr4). J Exp Med 189:615–625

    Article  PubMed  CAS  Google Scholar 

  24. O’Brien AD, Metcalf ES, Rosenstreich DL (1982) Defect in macrophage effector function confers Salmonella typhimurium susceptibility on C3H/HeJ mice. Cell Immunol 67:325–333

    Article  PubMed  Google Scholar 

  25. Eisenstein TK, Killar LM, Stocker BA, Sultzer BM (1984) Cellular immunity induced by avirulent Salmonella in LPS-defective C3H/HeJ mice. J Immunol 133:958–961

    PubMed  CAS  Google Scholar 

  26. Fernandez-Cabezudo MJ, Mechkarska M, Azimullah S, al-Ramadi BK (2009) Modulation of macrophage proinflammatory functions by cytokine-expressing Salmonella vectors. Clin Immunol 130:51–60

    Article  PubMed  CAS  Google Scholar 

  27. Hoiseth SK, Stocker BA (1981) Aromatic-dependent Salmonella typhimurium are non-virulent and effective as live vaccines. Nature 291:238–239

    Article  PubMed  CAS  Google Scholar 

  28. Al-Ramadi BK, Fernandez-Cabezudo MJ, Mustafa N, Xu D (2004) Activation of innate immune responses by IL-2-expressing Salmonella typhimurium is independent of Toll-like receptor 4. Mol Immunol 40:671–679

    Article  PubMed  CAS  Google Scholar 

  29. Strugnell R, Dougan G, Chatfield S, Charles I, Fairweather N, Tite J, Li JL, Beesley J, Roberts M (1992) Characterization of a Salmonella typhimurium aro vaccine strain expressing the P.69 antigen of Bordetella pertussis. Infect Immun 60:3994–4002

    PubMed  CAS  Google Scholar 

  30. al-Ramadi BK, Fernandez-Cabezudo MJ, Ullah A, El-Hasasna H, Flavell RA (2006) CD154 is essential for protective immunity in experimental Salmonella infection: evidence for a dual role in innate and adaptive immune responses. J Immunol 176:496–506

    PubMed  CAS  Google Scholar 

  31. Oppmann B, Lesley R, Blom B, Timans JC, Xu Y, Hunte B, Vega F, Yu N, Wang J, Singh K et al (2000) Novel p19 protein engages IL-12p40 to form a cytokine, IL-23, with biological activities similar as well as distinct from IL-12. Immunity 13:715–725

    Article  PubMed  CAS  Google Scholar 

  32. Eisenstein TK, Killar LM, Sultzer BM (1984) Immunity to infection with Salmonella typhimurium: mouse-strain differences in vaccine- and serum-mediated protection. J Infect Dis 150:425–435

    Article  PubMed  CAS  Google Scholar 

  33. Heppner G, Weiss DW (1965) High susceptibility of strain A mice to endotoxin and endotoxin-red blood cell mixtures. J Bacteriol 90:696–703

    PubMed  CAS  Google Scholar 

  34. Sultzer BM (1968) Genetic control of leucocyte responses to endotoxin. Nature 219:1253–1254

    Article  PubMed  CAS  Google Scholar 

  35. Eisenstein TK, Deakins LW, Killar L, Saluk PH, Sultzer BM (1982) Dissociation of innate susceptibility to Salmonella infection and endotoxin responsiveness in C3HeB/FeJ mice and other strains in the C3H lineage. Infect Immun 36:696–703

    PubMed  CAS  Google Scholar 

  36. Weiss DS, Raupach B, Takeda K, Akira S, Zychlinsky A (2004) Toll-like receptors are temporally involved in host defense. J Immunol 172:4463–4469

    PubMed  CAS  Google Scholar 

  37. Talbot S, Totemeyer S, Yamamoto M, Akira S, Hughes K, Gray D, Barr T, Mastroeni P, Maskell DJ, Bryant CE (2009) Toll-like receptor 4 signalling through MyD88 is essential to control Salmonella enterica serovar Typhimurium infection, but not for the initiation of bacterial clearance. Immunology 128:472–483

    Article  PubMed  CAS  Google Scholar 

  38. Eckmann L, Kagnoff MF (2001) Cytokines in host defense against Salmonella. Microbes Infect 3:1191–1200

    Article  PubMed  CAS  Google Scholar 

  39. Mastroeni P, Clare S, Khan S, Harrison JA, Hormaeche CE, Okamura H, Kurimoto M, Dougan G (1999) Interleukin 18 contributes to host resistance and gamma interferon production in mice infected with virulent Salmonella typhimurium. Infect Immun 67:478–483

    PubMed  CAS  Google Scholar 

  40. Nauciel C, Espinasse-Maes F (1992) Role of gamma interferon and tumor necrosis factor alpha in resistance to Salmonella typhimurium infection. Infect Immun 60:450–454

    PubMed  CAS  Google Scholar 

  41. Gulig PA, Doyle TJ, Clare-Salzler MJ, Maiese RL, Matsui H (1997) Systemic infection of mice by wild-type but not Spv- Salmonella typhimurium is enhanced by neutralization of gamma interferon and tumor necrosis factor alpha. Infect Immun 65:5191–5197

    PubMed  CAS  Google Scholar 

  42. Richter-Dahlfors A, Buchan AM, Finlay BB (1997) Murine salmonellosis studied by confocal microscopy: Salmonella typhimurium resides intracellularly inside macrophages and exerts a cytotoxic effect on phagocytes in vivo. J Exp Med 186:569–580

    Article  PubMed  CAS  Google Scholar 

  43. Mittrucker HW, Kaufmann SH (2000) Immune response to infection with Salmonella typhimurium in mice. J Leukoc Biol 67:457–463

    PubMed  CAS  Google Scholar 

  44. Kagaya K, Watanabe K, Fukazawa Y (1989) Capacity of recombinant gamma interferon to activate macrophages for Salmonella-killing activity. Infect Immun 57:609–615

    PubMed  CAS  Google Scholar 

  45. Shtrichman R, Samuel CE (2001) The role of gamma interferon in antimicrobial immunity. Curr Opin Microbiol 4:251–259

    Article  PubMed  CAS  Google Scholar 

  46. Muotiala A, Makela PH (1993) Role of gamma interferon in late stages of murine salmonellosis. Infect Immun 61:4248–4253

    PubMed  CAS  Google Scholar 

  47. Maskell DJ, Hormaeche CE, Harrington KA, Joysey HS, Liew FY (1987) The initial suppression of bacterial growth in a Salmonella infection is mediated by a localized rather than a systemic response. Microb Pathog 2:295–305

    Article  PubMed  CAS  Google Scholar 

  48. Bao S, Beagley KW, France MP, Shen J, Husband AJ (2000) Interferon-gamma plays a critical role in intestinal immunity against Salmonella typhimurium infection. Immunology 99:464–472

    Article  PubMed  CAS  Google Scholar 

  49. Hess J, Ladel C, Miko D, Kaufmann SH (1996) Salmonella typhimurium aroA- infection in gene-targeted immunodeficient mice: major role of CD4+ TCR-alpha beta cells and IFN-gamma in bacterial clearance independent of intracellular location. J Immunol 156:3321–3326

    PubMed  CAS  Google Scholar 

  50. Lykens JE, Terrell CE, Zoller EE, Divanovic S, Trompette A, Karp CL, Aliberti J, Flick MJ, Jordan MB (2010) Mice with a selective impairment of IFN-gamma signaling in macrophage lineage cells demonstrate the critical role of IFN-gamma-activated macrophages for the control of protozoan parasitic infections in vivo. J Immunol 184:877–885

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Drs F.Y. Liew and D. Xu (University of Glasgow, Western Infirmary, UK) for generously providing the BRD509 and GIDIFN Salmonella strains. We wish to thank Mohamed El-Wasilah and Arshad Khan for animal care and husbandry. This work was funded by a PhD fellowship from the Ministry of higher education, Government of Libya (to SMA) and by grants from the Research Grants Committee of the Faculty of Medicine and Health Sciences, UAE University (to BKA).

Conflict of interest

The authors declare no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Basel K. al-Ramadi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Al-Ojali, S.M., Tara Moore, C.B., Fernandez-Cabezudo, M.J. et al. IFNγ expression by an attenuated strain of Salmonella enterica serovar Typhimurium improves vaccine efficacy in susceptible TLR4-defective C3H/HeJ mice. Med Microbiol Immunol 202, 49–61 (2013). https://doi.org/10.1007/s00430-012-0248-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00430-012-0248-z

Keywords

Navigation